

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

INTEGRATED ROBUST OPEN-SET SPEAKER IDENTIFICATION
SYSTEM (IROSIS)

CARNEGIE MELLON UNIVERSITY

MAY 2012

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2012-162

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the
general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-162 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
DARREN M. HADDAD WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor

 Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 MAY 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

SEP 2010 – DEC 2011
4. TITLE AND SUBTITLE

Integrated Robust Open-Set Speaker Identification System (IROSIS)

5a. CONTRACT NUMBER
FA8750-10-1-0243

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
35885G

6. AUTHOR(S)

Dr. Qin Jin and Yun Wang

5d. PROJECT NUMBER
ASID

5e. TASK NUMBER
BA

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGC
525 Brooks Road
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-162

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report summarizes our effort towards building a robust open-set speaker recognition system. It reviews the various techniques
we have used for acoustic feature extraction, speaker modeling, scoring and score normalization, and presents experiment results.
We have worked on all the modules of speaker recognition systems. At the front end, we have studied a variety of acoustic features
and pre-/post-processing techniques, and have come up with a PPMD feature that combines the benefits of multitaper MFCC, DSCC,
pre-emphasis, and short-time feature Gaussianization. At the speaker modeling and scoring stages, we have investigated GMM
speaker modeling, SVM speaker modeling, and joint factor analysis (JFA). We have demonstrated that compared to GMM modeling,
SVM modeling and scoring are not only better and also faster. We have also shown that T-norm of the scores improves speaker
identification performance on the ROSSI database.

15. SUBJECT TERMS
Open-set speaker identification, acoustic feature extraction, speaker modeling, support vector machine (SVM), joint factor analysis
(JFA)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

46

19a. NAME OF RESPONSIBLE PERSON
DARREN M. HADDAD

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.

i

TABLE OF CONTENTS

LIST OF FIGURES ... ii
LIST OF TABLES ... ii

1. Summary .. 1
2. Introduction .. 1

2.1 Block Diagram of Speaker Recognition Systems .. 1
2.2 Databases Used in the IROSIS Project .. 2
2.3 Evaluation Criteria ... 3

3. Methods, Assumptions, and Procedures .. 5
3.1 Acoustic Feature Extraction ... 5

3.1.1 Various Acoustic Features .. 5
3.1.2 Pre- and Post-Processing Techniques .. 7
3.1.3 Best Feature Selected ... 7

3.2 Speaker Modeling and Scoring .. 8
3.2.1 Gaussian Mixture Modeling (GMM) ... 8
3.2.2 Support Vector Machine (SVM) Modeling .. 10

3.3 Joint Factor Analysis (JFA) Modeling ... 11
3.3.1 A Tutorial of JFA ... 12
3.3.2 Variants of JFA and Our Choices ... 20
3.3.3 Scoring Methods Special to JFA .. 22

3.4 Score Normalization .. 24
4. Results and Discussion .. 25

4.1 Closed-Set SID Experiments ... 25
4.2 Open-Set SID Experiments .. 27
4.3 Experiments with JFA .. 29

4.3.1 Toolkits Used in Our Experiments of JFA ... 29
4.3.2 JFA Experiment Setup and Results .. 30

5. Conclusion ... 31
6. References .. 31

Appendix A. Derivation of GMM Kernels .. 33

A.1 The PLAIN kernel.. 33
A.2 The GUMI kernel [A-1] ... 33
A.3 The KL kernel [A-1][A-2] ... 34
A.4 The L2 kernel [A-2] ... 35
A.5 The BHATT and WBHATT kernels ... 36

Appendix B. Derivation of Minimum Divergence Estimation ... 38
Appendix C. JFA Speaker Enrolment: Joint Estimation of x, y, z ... 41

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS ... 43

ii

LIST OF FIGURES

Figure 1. Block Diagram of a Typical Speaker Recognition System 1
Figure 2. Procedure of Extracting the Baseline MFCC Feature .. 5
Figure 3. Procedure of Extracting the MHEC Feature .. 5
Figure 4. Comparison of the Extraction of the Delta MFCC and DSCC Features 7
Figure 5. Procedure of Extracting PPMD Features ... 8
Figure 6. Fusion of MFCC, HSCC and FFV ... 27
Figure 7. Open-Set Evaluation Results on the ROSSI Database 29

LIST OF TABLES

Table 1. Detail of NIST Data Used for Training and Testing .. 3
Table 2. Performance of Various Acoustic Features and Pre-/Post-Processing

Techniques, Compared by Closed-Set Accuracy on the ROSSI Database 25
Table 3. Performance of HSCC, FFV, and Their Fusion with MFCC, Compared by

Closed-Set Accuracy on the MIXER5 Database ... 27
Table 4. Comparison of EER of various training methods of JFA matrices and scoring

methods on the sixth subset of NIST 2008 male trials .. 30

Approved for Public Release; Distribution Unlimited.

1

1. SUMMARY
 This report summarizes our effort towards building a robust open-set speaker recognition
system.
 In Section 2, we introduce the structure of speaker recognition systems, the databases we
have used in our experiments, and the evaluation criteria we used to evaluate the results.
 In Section 3, we review the various techniques we have used for acoustic feature
extraction. First we review the acoustic features and pre-/post-processing techniques, and
propose a PPMD feature that combines their advantages. Next, we elaborate on a number of
speaker modeling and scoring methods, including GMM modeling, SVM modeling, and joint
factor analysis (JFA). We also introduce some score normalization techniques.
 In Section 4 we present experiment results. The experiments compare the performances
of various acoustic features and pre-/post-processing techniques, and show that PPMD
achieves a better performance than other features. The experiments also show that SVM
speaker modeling is both better and faster than GMM modeling, and T-norm of the scores
improves open-set speaker identification performance on the ROSSI database.
 The report is concluded in Section 5.

2. INTRODUCTION

2.1 Block Diagram of Speaker Recognition Systems

Background
Features

Target
Features

Trial
Features

Score fusion
and/or normalization

Answers

Background
Utterances

Target
Utterances

Trial
Utterances

UBM

Target
GMMs

Trial
GMMs

Score Table Score Table

SVM-negative
Features

SVM-negative
Utterances

SVM-negative
GMMs

Target
SVMs

Decision
Strategy

Figure 1. Block Diagram of a Typical Speaker Recognition System
(Dotted Blocks and Arrows Denote Modules Special to SVM Speaker Modeling)

Approved for Public Release; Distribution Unlimited.

2

 Figure 1 is the block diagram of a typical speaker recognition system. A complete run of
the system consists of the following steps:

(0) Voice activity detection (VAD). This is a preliminary step in which the
speech-containing regions are located in the utterance. Usually people don’t spend too much
effort here; they usually just apply an energy-based threshold on the frames. We determine the
threshold by clustering the log-energy values of the frames in an utterance into 2 clusters
using the k-means algorithm.

(1) Feature extraction. This turns the speech-containing regions into sequences of
feature vectors. We have investigated lots of features (MFCC, MHEC, WMVDR, Multitaper
MFCC, SCF & SCM, HSCC, FFV, DSCC) and pre-/post-processing techniques
(pre-emphasis, LP, CMN, RASTA, Gaussianization, delta features). Feature fusion also goes
here.

(2) UBM training. A universal background model (UBM) is trained from some
background utterances. The UBM will be useful in the MAP training during speaker
enrollment, and may also act as a reference in scoring.

(3) Speaker enrollment and modeling. The traditional method of modeling target
speakers is Gaussian mixture modeling. A Gaussian mixture model (GMM) is either trained
independently or adapted from the UBM for each target speaker. Common adaptation
techniques include relevance MAP adaptation and joint factor analysis (JFA). It is also
possible to model the speakers discriminatively using support vector machines (SVMs), in
which case a SVM is trained for each speaker using his/her own GMM as a positive example
and the GMMs of many other speakers as negative examples.

(4) Scoring. A score is given for each trial utterance u against the model of each
candidate speaker s for this utterance (or the UBM). The scoring method and its inputs
depend on the speaker modeling technique used. For GMM speaker modeling, the score is
usually calculated from the target GMM and trial utterance features. This is called
“frame-by-frame scoring”, and it can be approximated in various ways for faster speed. For
SVM speaker modeling, the score is calculated from the target SVM and a GMM trained
from the trial utterance.

(5) Score fusion and/or normalization. Normalization techniques include Z-norm,
T-norm, ZT-norm and TZ-norm.

(6) Decision. For speaker verification, the score of each trial utterance against its
hypothesized speaker is compared against a global threshold. For closed-set speaker
identification, the target speaker scoring the highest is picked for each trial utterance. For
open-set speaker identification, the highest-scoring target speaker is picked, and its score
compared against a global threshold to decide whether the utterance comes from the target
speaker or a non-target speaker.

2.2 Databases Used in the IROSIS Project

 The primary database used in this project is the ROSSI database. This is a database for
open-set speaker identification, i.e. one has to decide both whether the trial speaker is in the
target set and who the speaker is. This database comprises of 8 sets, differing in language,
channel, environment, etc. Each set has 100 training utterances (1 for each target speaker) and

Approved for Public Release; Distribution Unlimited.

3

200 trial utterances (1 in-set trial utterance for each target speaker and 100 out-of-set trial
utterances). In addition to these, Set 1 has 196 development utterances, and Sets 2~8 share
400 development utterances. The development utterances are used for UBM training, SVM
training and score normalization.
 For some time in the spring of 2011, we also used the MIXER5 database. This database
contains speech from 60 male speakers and 81 female speakers. Each speaker speaks in 6
sessions (labeled U ~ Z) of half an hour each, and the speech is recorded in 14 channels
(labeled A ~ N). We selected the data to make up four scenarios that are similar to the sets in
the ROSSI database. We used Session V for training and Session Y for testing, and
mix-matched the channels B (close-talking) and L (far-field). The four scenarios are referred
to as VB-YB, VL-YL, VB-YL and VL-YB respectively.

Table 1. Detail of NIST Data Used for Training and Testing

Purpose Source No.
Speakers

No.
Utterances

Duration
(hr, voiced part

only)

Training UBM
2004, 2005, 2006

single train 692 867 29

Training V 2005, 2006 multi train 435 2908 98
Training D 2004 multi train 125 1382 45
Training U 2005, 2006 TEL test - 2672 90
Negative

examples for
SVM

2004 single train 125 246 8

Enrollment 2008 short train 506 648 20
Test 2008 short test 279 620 19

 As JFA speaker modeling requires much more data than the ROSSI database could
provide, we also used the data from the NIST SRE evaluations in 2004, 2005, 2006, and 2008.
The NIST database is for speaker verification, i.e. one only needs to decide whether the trial
speaker is the hypothesized target speaker or not. Our experiments have focused on the
telephone utterances of male speakers. Table 1 shows how we chose the data for training and
testing.

2.3 Evaluation Criteria

 In an open-set SID system, the ground truth and the identification result can be classified
into five cases:
 Correct accept (CA) – the test speaker is a target speaker, and the system identifies it

correctly.
 Speaker confusion error (SE) – the test speaker is a target speaker, but the system

misclassifies it as another target speaker.

Approved for Public Release; Distribution Unlimited.

4

 False reject (FR, also called “miss”) – the test speaker is a target speaker, but the
system classifies it as an imposter.

 Correct reject (CR) – the test speaker is an imposter, and the system correctly
classifies it as an imposter.

 False accept (FA, also called “false alarm”) – the test speaker is an imposter, but the
system accepts it as a target speaker.

 Evaluation criteria are calculated from the count of the five types of results. We used the
following for criteria to evaluate our open-set SID experiments on the ROSSI and MIXER5
databases:

 Closed-set accuracy: CAAccuClosed
CA SE

=
+

, with the threshold θ set to minus

infinity (in which case nothing is rejected, and FR = 0).
 Open-set accuracy: The harmonic mean of the correct identification rate for I- and

O-trials, with the threshold θ set to the value that maximizes the accuracy, which is
found by parameter sweeping.

 1 1

2 CA CRAccuOpen max , ,
CA SE FR CR FA

I O
I Oθ − −= = =

+ + + +
 (1)

 Equal error rate (EER): This criterion only evaluates the performance of in/out
classification, and considers speaker confusion errors as correct classifications. The
EER is the classification error rate when the threshold θ is set so that the false reject
rate and false accept rate are identical:

Set so thatCA SE CREER

CA SE FR CR FA

θ+
= =====

+ + +
 (2)

 In order that all the criteria are the bigger the better, we report 1 – EER instead.
 Precision biased correct decision rate (F0.5): This criterion also only considers the

in/out classification, but is focused on the precision and recall of target trials. It is
defined as a weighted harmonic mean of the precision and recall. Like the open-set
accuracy, the threshold θ is set to maximize the criteria.

 CA SE CA SEPrecision , Recall
CA SE FA CA SE FR

+ +
= =

+ + + +
 (3)

2

0.5 2

(1) Precision Recallmax , 0.5
Precision Recall

F
θ

β β
β
+ ⋅ ⋅

= =
⋅ +

 (4)

 Closed-set accuracy evaluates only the “identification” performance and doesn’t
consider the in-set / out-of-set decision; on the other hand, EER and F0.5 only evaluate the
in/out decision performance. Open-set accuracy is a good overall measure of the
performance.
 In a speaker verification task, there are no speaker confusion errors (SE). We use the
equal error rate (EER) as the criterion to evaluate our speaker verification experiments on the
NIST database.

Approved for Public Release; Distribution Unlimited.

5

3. METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Acoustic Feature Extraction

3.1.1 Various Acoustic Features

 (0) Baseline MFCC feature. The procedure of extracting the baseline MFCC feature is
shown in Figure 2. Based on some pilot experiments on the MIXER5 experiment, we chose to
use CMN (cepstral mean normalization) as the normalization technique (in which we
normalize both the mean and the variance of the features). We didn’t use RASTA filtering [1]
or spectral subtraction for noise reduction as they didn’t contribute to the performance.

Framing
and FFT

Mel
filterbank

Logarithmic
non-linearity DCT CMNSpeech MFCC

Figure 2. Procedure of Extracting the Baseline MFCC Feature

 (1) MHEC (mean Hilbert envelop coefficients) [2]. The procedure of extracting the
MHEC feature is shown in Figure 3. It is claimed to be magically robust to car noise.
However, the extraction procedure is not very different from MFCC: the Gammatone
filterbank is similar to the Mel filterbank although the former is in the time domain and the
latter is in the frequency domain; the calculation of the Hilbert envelope is similar to that of
the energy in each time-frequency unit; and the long-term average is similar to CMS (cepstral
mean subtraction). There seems to be no theoretical foundation why MHEC should be robust
to car noise, and our experiments didn’t support this claim, either.

Figure 3. Procedure of Extracting the MHEC Feature

 (2) WMVDR (warped minimum variance distortionless response) [3]. MVDR is a
method for estimating a smoothed version of a signal’s power spectrum. Its warped version,
warped MVDR (WMVDR), is used to replace the FFT and filterbank steps in the extraction
of MFCC, producing a smoother power spectrum with different resolution at different
frequencies just like the output of the Mel filterbank. There had been experiments [3]
showing that WMVDR features perform better than MFCC features. But our experiments
have shown that the performance of WMVDR features wasn’t very different from MFCC.

Approved for Public Release; Distribution Unlimited.

6

This means that a smoother power spectrum doesn’t have much effect on the final
identification performance.
 (3) Multitaper MFCC [4]. The motivation of multitaper MFCC is to reduce the variance
in the power spectrum estimation. It estimates the power spectrum of a frame using a series of
different windows (also called “tapers”), and then average the different estimations of the
power spectrum. The operation of averaging reduces the variance in the power spectrum at
the cost of reduced resolution, but resolution is not important because the power spectrum
will be fed into the Mel filterbank anyway. The three types of multitapers introduced in [4] all
resulted in significant improvement in closed-set accuracy on the ROSSI database, especially
the multipeak series with 8 windows.
 (4) SCF & SCM (spectrum centroid frequency & magnitude) [5]. In the computation
of MFCC, the energy distribution within each band is ignored. SCF aims to incorporate this
information in the feature as well. Defined as the average of the frequency points on the
spectrum within a band weighted by the magnitude at these frequency points, SCF describes
how much the energy distribution deviates from the center frequency in each band. SCM is
defined as the average of the magnitudes within a band weighted by frequency, and can be
computed efficiently together with SCF. Although there’s no reason to weight the magnitude
by frequency, because the bands are narrow, SCM is actually almost equal to the MFCC.
 Since SCF contains information that is absent in MFCC, a fusion of the two features is
expected to improve the performance. However, the performance of SCF alone turned out so
poor that neither feature fusion nor score fusion performed as well as MFCC.
 (5) HSCC & FFV (harmonic structure cepstral coefficients & fundamental
frequency variation) [6][7]. These are two prosodic features that provide complementary
information to MFCC. HSCC models the probabilistic distribution of the fundamental
frequency by harmonic summation, and FFV models the rate of variation of the fundamental
frequency by stretching and comparing the short-time spectrum of adjacent frames. We
carried out score fusion of MFCC, HSCC and FFV on the MIXER5 database. The fusion
resulted in marginal improvement in closed-set accuracy, but the fusion weights were quite
counter-intuitive (FFV often carries a larger weight than MFCC).
 (6) DSCC (delta-spectral cepstral coefficients) [8]. This feature aims at enhancing the
noise robustness of delta MFCC features. Its extraction procedure is compared with that of
MFCC in Figure 4. In extracting delta MFCC, the differential is performed last, long after the
logarithm. Additive noise can have a destructive effect on the log spectrum filling in all the
deep valleys, therefore the differential of the clean log spectrum and noisy log spectrum will
be very different. But on the spectrum before logarithm, the effect of additive noise is
relatively small. DSCC calculates the differential before applying the logarithmic
non-linearity, and since the differential can have negative values, the logarithm is replaced by
Gaussianization. Our experiments have shown that DSCC is more robust to noise than delta
MFCC.

Approved for Public Release; Distribution Unlimited.

7

Framing
and FFT

Mel
filterbank

Logarithmic
non-linearity DCT CMN MFCCSpeech Delta

MFCC

Framing
and FFT

Mel
filterbank

Gaussian-
ization DCTSpeech DSCC

Differential

CMNDifferential

Figure 4. Comparison of the Extraction of the Delta MFCC and DSCC Features

3.1.2 Pre- and Post-Processing Techniques

 (1) Pre-emphasis and delta features. These are traditional pre- and post-processing
techniques. We have verified that they do improve the performance on the ROSSI database,
both closed-set and open-set.
 (2) Linear prediction (LP) pre-processing for noise reduction. Linear prediction can
be used for speech coding, because speech signals have patterns and are largely predictable.
On the other hand, noise is random and unpredictable. This inspired us to think that
pre-processing a noisy signal with linear prediction can increase the signal-to-noise ratio
(SNR) of the signal. We applied LP with block filtering up to 20th order; later we discovered
some related work [9] that used least-mean-squares (LMS) filtering up to several hundredth
order. Most combinations of filtering method and filter order were confirmed to increase the
SNR, and the typical SNR gain is between 5 ~ 10 dB. However, the increase in SNR didn’t
translate directly into improved performance of the back-end system. We experimented with
three back-end systems (speaker recognition on the MIXER5 database, continuous spoken
digits recognition, and HMM-based pitch tracking), and the performance of all the three
systems stayed the same no matter we applied LP pre-processing or not.
 (3) Short-time feature Gaussianization [10]. This is an advanced version of CMN.
Gaussianization not only normalizes the mean and variance of the features, but warps them
non-linearly to conform to the Gaussian density function. In short-time feature
Gaussianization, a feature value that is the k-th smallest in an N-point window around it will

be warped to 1[(1) /]k N−Φ − , where Φ is the Gaussian cumulative density function (CDF).

Short-time feature Gaussianization has shown consistent performance improvement across
most conditions, although there hasn’t been any determinative explanation as to why. A
plausible explanation is that a Gaussian distribution of the features agrees best with the GMM
speaker modeling.

3.1.3 Best Feature Selected

 Our experiments with the various types of acoustic features and pre-/post-processing
techniques (see Section 4.1) showed the following to be beneficial: Multitaper MFCC (with 8
multipeak tapers), DSCC, pre-emphasis, short-time feature Gaussianization. We combined
these all and arrive at a 40-dimensional acoustic feature whose extraction procedure is shown
in Figure 5. According to our old naming conventions, this feature should be called

Approved for Public Release; Distribution Unlimited.

8

PRE_PEAK8_MFCC20_GAUSS300 + PRE_PEAK8_DSCC20(GAUSS300)_CMN
And we call it PPMD for short.

Pre-emphasis
Multipeak

Spectrogram
(20 bands, 8 tapers)

Logarithmic
non-linearity DCT

Gaussianization
(window length
= 300 frames)

Speech

Delta
Gaussianization
(window length
= 300 frames)

DCT CMN

C
oncatenation

PPMD
feature

Figure 5. Procedure of Extracting PPMD Features

 In addition to this, we also used a version of MFCC features that was used previously in
other projects. This feature also has 40 dimensions, and we call it RM40. RM40 shows
slightly inferior performance to PPMD on the ROSSI database, but is consistently better than
PPMD on the NIST database. This verifies the fact that there is no universal best feature.

3.2 Speaker Modeling and Scoring

3.2.1 Gaussian Mixture Modeling (GMM)

 The basic method of modeling the speech of a target speaker is Gaussian mixture models
(GMM). A GMM is made up of C components (in our experiments, C = 256 for ROSSI and

MIXER5, and C = 1024 for NIST), each component i having a mean vector iµ , a (typically

diagonal) covariance matrix iΣ , and a weight iw .

 The GMM for a target speaker can be trained entirely from the data of this speaker, but it
is usually preferred to adapt it from the UBM. There are two reasons to favor adaptation: there
may be not enough data to train a speaker GMM robustly, while UBM can provide a
reasonable prior; the components of an adapted GMM are aligned with those of the UBM,
which is crucial for the SVM modeling to be introduced. In adaptation, usually the covariance
matrices and weights are kept fixed, and only the component means are adapted.

3.2.1.1 GMM Adaptation Techniques

 Common GMM adaptation techniques include relevance MAP adaptation [11] and joint
factor analysis (JFA).
 In relevance MAP adaptation, first an EM iteration is run with the UBM as the initial

value to obtain a set of iµ ’s. Then these iµ ’s are interpolated with those of the UBM via a

relevance factor r:

Approved for Public Release; Distribution Unlimited.

9

UBM

i i i
i

i

n r
n r

µ µµ +
←

+
 (5)

where in is the soft count of feature vectors aligned with component i. This interpolation has

the effect that the less data a component has, the more its mean is pulled back to the UBM
mean. The appropriate value of r depends on the amount of data available, but the
performance is found to be not very sensitive to r. A typical value of r is 16.
 Relevance MAP adaptation is called “MAP” because it is equivalent to imposing a prior
on the component means:

 1~ (,)UB
i

M
i ir

µ µ ΣN (6)

Joint factor analysis is a more sophisticated version of MAP adaptation, where the parameters
of the prior also need to be trained from data. Due to its complexity, it deserves separate
explanation in Section 3.3.

3.2.1.2 Scoring Methods with GMM Modeling

 The basic method to score an utterance against a GMM is full frame-by-frame scoring.

Denote the feature vectors of the utterance by 1{ , , }nX X X= … , and the GMM by

{ , , }i i iG wµ= Σ , then the score is defined as the frame-average log-likelihood:

1 1

1score(,) log (; ,)
n C

i t i i
t i

X G w p X
n

µ
= =

= Σ∑ ∑ (7)

where (; ,)p X µ Σ is the multivariate Gaussian density function. This score is usually

adjusted by subtracting the score of the trial utterance against the UBM.
 Full frame-by-frame scoring can be slow due to the summation across the GMM
components. When an utterance needs to be scored against multiple GMMs (e.g. in speaker
identification, or in speaker verification where an utterance needs to be verified against
multiple speakers), it can be beneficial to use fast frame-by-frame scoring ([11],). In fast
frame-by-frame scoring, the second summation doesn’t go across all components, but only a
few (say, 5) top components:

1

1score(,) log (; ,)
t

n

i t i i
t TCi

X G w p X
n

µ
∈=

= Σ∑ ∑ (8)

The “top components” set tTC is chosen for each feature vector based on the UBM: it

contains the components that yield the several highest values of (; ,)UBM
i t i iw p X µ Σ .

Approved for Public Release; Distribution Unlimited.

10

3.2.2 Support Vector Machine (SVM) Modeling

 GMM is a generative modeling technique of speakers, but speakers can also be modeled
discriminatively with support vector machines (SVM). For each target speaker, a GMM is
adapted from the UBM for each training utterance, and these are used as the positive training
examples for the SVM. In addition, a GMM is adapted from the UBM for each utterance in a
pool of “SVM-negative” utterances, and these are used as negative training examples for the
SVMs of all target speakers. It is possible to re-use the utterances used for UBM training as
SVM-negative utterances.
 To train an SVM with GMMs as training examples, it is necessary to come up with a
kernel function for GMMs. Because the component covariances and weights are not adapted,
a GMM can also be represented by the collection of its component means. The
CF-dimensional vector obtained by stacking the F-dimensional mean vectors of the C
components is called the supervector. A kernel function for GMMs is an inner product of the
supervectors, optionally with some normalization and weighting with the covariance matrices
and component weights.
 We used the following six types of kernel functions:

 PLAIN (,) () ()a T b
a b i ii

K M M µ µ=∑ (9)

 1
GUMI (,) () ()a T b

a b i i ii
K M M µ µ−= Σ∑ (10)

 1
KL (,) () ()a T b

a b i i i ii
K M M w µ µ−= Σ∑ (11)

2 1

L2 1/2

() ()(,) exp
4

a b T a b
i i i i i i

a b i
i

wK M M µ µ µ µ− − Σ −
= − 

Σ  
∑ (12)

1

BHATT
() ()(,) exp

8

a b T a b
i i i i i

a b i
K M M µ µ µ µ− − Σ −

= − 
 

∑ (13)

1

WBHATT
() ()(,) exp

8

a b T a b
i i i i i

a b ii
K M M w µ µ µ µ− − Σ −

= − 
 

∑ (14)

These functions are derived from different motivations; see A for details. Despite their
different motivations, the forms of the kernels look similar, and it is possible to tweak the
powers and constants in the formulas to make new kernels. Our experience (see Section 4.2
for example), however, consistently shows that there’s not much difference between the
performances of five of these kernels, except for L2 which performs significantly worse.
 To score a trial utterance against the SVM of target speaker, first adapt a GMM for this
utterance, then substitute this GMM into the discriminant function of the SVM. For a
negative trial utterance, the score is usually around -1.0. However, because the SVMs are
usually trained with very few positive examples (often only one), the score can be negative
even for positive trial utterances. Our experience is that the scores for positive trial utterances
are usually around -0.7. As a result, we cannot directly perform speaker verification based on
the sign of this score, but need to tune the threshold on development data.

Approved for Public Release; Distribution Unlimited.

11

 Our experiments on both the ROSSI database (see Section 4.2) and the NIST database
(see Section 4.3) have shown that SVM modeling is significantly better than GMM modeling.

3.3 Joint Factor Analysis (JFA) Modeling

 JFA is a generalization of relevance MAP adaptation in GMM modeling. It assumes that
the supervector m of a speaker GMM can be decomposed as

 m M Vy Ux Dz= + + + (15)

In this formula, M is the UBM supervector; V and U are tall and thin matrices with CF rows
and only a few hundred columns whose columns are eigenvoices and eigenchannels; D is a
CF-by-CF diagonal matrix; y, x, z are random vectors that have sizes compatible with the
matrices, and obey the standard normal distribution. In other words, it imposes on the speaker
GMM supervector m a prior distribution of the following form:

 2~ (,)T TM VV UU Dm + +N (16)

It can be shown that relevance MAP adaptation is a special case of JFA with 0V U= = and
2 /D r= Σ (Σ is a diagonal block matrix whose blocks are the component covariance

matrices).
 In Eq. (15), the terms Vy and Dz are considered to come from the speaker characteristics,
while the term Ux is considered to arise due to environment and channel variations. Therefore

the latter term is dropped, and the supervector is take to be the sum M Vy Dz+ + .

 To obtain GMM models (or supervectors) for a set of speakers via JFA, there are two
major steps. First, the matrices V, U, D specifying the prior distribution must be trained from
data. Second, the vectors y, x, z need to be estimated under the MAP criterion. Both these
steps involve complicated mathematics; we give a tutorial in Section 3.3.1.
 As an extension of relevance MAP adaptation, JFA also falls in the category of GMM
speaker modeling, and therefore can be used in combination with SVM speaker modeling. It
was our goal to show that JFA + SVM modeling would be better than relevance MAP + SVM,
but unfortunately we weren’t able to achieve this goal.
 JFA was first proposed in a fully convolved form [12], and was later simplified by
multiple researchers, resulting in many variants. These variants and our choice will be
introduced in Section 3.3.2. In order to deal with the channel mismatch between the target
GMM (where the channel effect Ux has been dropped) and the trial utterance, many scoring
methods have been proposed for JFA [13], with different levels of approximation. These
scoring methods will be introduced in Section 3.3.3. Our experiment setup and results of JFA
will be given in Section 4.3.

Approved for Public Release; Distribution Unlimited.

12

3.3.1 A Tutorial of JFA

3.3.1.1 ML training of GMMs, and Baum-Welch statistics

 To fully understand the mathematics involved in JFA, it is helpful to review the
maximum likelihood (ML) training of GMMs.
 Suppose we want to train a GMM with C components from a set of F-dimensional -

feature vectors 1{ , , }TX X X= … (all column vectors). For the c-th component (, ,1c C= …),

we denote the mean vector by cm (column vector), the covariance matrix by cΣ , and the

component weight by cw . We assume the covariance matrices to be diagonal. For

conciseness, we define the CF-dimensional “supervector” m as the vertical concatenation of
the mean vectors, and the CF × CF “supercovariance” matrix Σ as the diagonal
concatenation of the covariance matrices.
 In our problem, we assume the covariance matrices and the components to be fixed and
known, and we need to find the supervector m that best fits the data X. Under the maximum
likelihood (ML) criterion, we seek to maximize the log likelihood of the data X given the
supervector m:

1

/2 1/2

() log (|) log (|) log () (| ,)

1log exp () ()
(2) | | 2

t

t t t t
t t Z

Tc
t c c t cF

t c c

L m P X m P X m P Z P X Z m

w X m X m
π

−

= = =

 = − − Σ − Σ  

∑ ∑ ∑

∑ ∑
 (17)

where 1, ,tZ C= … refers to the index of the component that generated the data sample tX .

This objective function is hard to optimize directly because of the sum nested in the log, and
the usual solution is the EM algorithm. The EM algorithm requires an auxiliary function

(, ')Q m m that satisfies

 () (, (, ') (')), QL m Q m m m m L m≤= (18)

In each EM iteration, the auxiliary function (, ')Q m m is maximized w.r.t. m’, and the old

supervector m is replaced by the new supervector m’. Eq. (18) guarantees that the objective

function ()L m is non-decreasing.

 The expression of the auxiliary function is given by:

Approved for Public Release; Distribution Unlimited.

13

(, ') (') KL(| , || | , ')

(| ,)log (| ') (| ,) log
(| , ')

(| ,)(| ,) log (| ') log
(| , ')

(, | ')(| ,) log
(| ,)

(| ,)

t

t

t

t t t t
t

t t
t t t

t t Z t t

t t
t t t

t Z t t

t t
t t

t Z t t

t t

Q m m L m Z X m Z X m

P Z X mP X m P Z X m
P Z X m

P Z X mP Z X m P X m
P Z X m

P X Z mP Z X m
P Z X m

P Z X m

= −

= −

 
= − 

 

=

=

∑

∑ ∑∑

∑∑

∑∑
log (, | ') (| ,)

t

t t t t
t Z t

P X Z m H Z X m+∑∑ ∑

 (19)

The second term (entropy) is a “constant” that does not depend on m’.
 In the E-step of an EM iteration, we calculate the posterior probability of the component

index given the data (| ,)t tP Z X m , according to the old supervector m. This step is also called

aligning the data with the components. We denote (| ,)t tP Z c X m= by tcN for short, and

define the following statistics (called Baum-Welch statistics [14]) of the data X for each
component, which will be useful in the M-step:

• Zeroth order statistics c tc
t

N N=∑ : the “number” of data samples aligned with the

c-th component.
• First order statistics c tc t

t
F N X=∑ : the sum of the data samples aligned with the c-th

component.
• Second order statistics T

c tc t t
t

S N X X=∑ : the sum of the “squares” of the data

samples aligned with the c-th component. This will not be useful since we’re only
training the mean vectors of the GMM.

We also define a CF × CF diagonal matrix N whose diagonal blocks are c FN I , where

, ,1c C= … and FI is a unit matrix of order F, and a CF-dimensional column vector F as a

vertical concatenation of the cF for all the components. It’s worth pointing out that, although

not explicitly noted, the Baum-Welch statistics (including N and F) are functions of the data X
and the supervector m.

 Now we look at the M-step, in which we maximize (, ')Q m m w.r.t. m’. We simplify

(, ')Q m m as follows:

Approved for Public Release; Distribution Unlimited.

14

1
/2 1/2

1 1

1 1

(, ') constant (| ,) log (, | ')

1constant log (') (')
(2) | | 2

1constant (' ' ')
2

1constant ' ' '
2

t

t t t t
t Z

Tc
tc t c c t cF

t c c

T T
tc c c t c c c

t c

T T

Q m m P Z X m P X Z m

wN X m X m

N m X m m

m F m Nm

π
−

− −

− −

= +

 
= + − − Σ − Σ 

= + Σ − Σ

= + Σ − Σ

∑∑

∑∑

∑∑
 (20)

Setting 1 1
' (, ') ' 0m Q m m F Nm− −∇ = Σ −Σ = , we obtain the optimal new supervector:

 1m̂ N F−= (21)

which is the familiar conclusion of setting the new mean vector of each component as the
average of the data aligned with that component.
 The entire EM algorithm starts by initializing the supervector m randomly or using
k-means clustering, and then repeats the EM iteration for a given number of times or until
convergence. The Baum-Welch statistics are re-calculated in every iteration.

3.3.1.2 MAP adaptation of GMMs in general

 Sometimes we don’t have enough data to train a GMM with ML robustly. In such cases
we can train the GMM with MAP, i.e. imposing a prior distribution on the supervector m. The

most common prior is the Gaussian (,)M ZN , where M is typically the supervector of the

UBM. The MAP objective function is:

 11'() () () ()
2

TL m L m m M Z m M−= − − − (22)

Similarly, the auxiliary function will also include the prior term:

 1 1 11 1'(, ') constant ' ' ' (') (')
2 2

T T TQ m m m F m Nm m M Z m M− − −= + Σ − Σ − − − (23)

Setting 1 1 1
' '(, ') ' (') 0m Q m m F Nm Z m M− − −∇ = Σ −Σ − − = , we obtain the optimal new

supervector:

 1 1 1() (ˆ)I Z N M Z Fm − − −= + Σ + Σ (24)

Because calculating the Baum-Welch statistics can be time-consuming, in MAP adaptation
we usually perform only one iteration, initializing the supervector to be that of the UBM.
Therefore the Baum-Welch statistics are also calculated against the UBM.
 Now is a good chance to understand why the relevance MAP adaptation is called MAP.
Let the covariance matrix of the prior distribution be

 1Z
r

= Σ (25)

where r is the relevance factor. It is easy to see that the adapted supervector will be

Approved for Public Release; Distribution Unlimited.

15

 1()ˆ ()m rI N rM F−= + + (26)

which is exactly the rule of relevance adaptation.

3.3.1.3 GMM adaptation using JFA

 JFA is just a way of specifying the prior distribution of the supervector m. It formulates m
as

 m M Ux Vy Dz= + + + (27)

In this formula, M is the UBM supervector. U and V are tall-and-thin matrices with CF rows
(typically between 104 and 105) but only several hundred columns, and D is a CF × CF
diagonal matrix. x, y, z are mutually independent random column vectors compatible with the

size of U, V, D, and obeying the standard Gaussian distribution (0,1)N . The term Ux models

the variability in the supervector due to the channel, and Vy + Dz models the variability due to
the speaker. The columns of U and V act as eigenvectors, and are called eigenchannels and
eigenvoices respectively. The elements of x and y are called channel factors and speaker
factor1.
 Eq. (27) effectively specifies the following prior distribution:

 2~ (,)T TM UU VV Dm + +N (28)

It seems we can substitute 2T TZ UU VV D= + + into Eq. (24), and the problem is solved.

 But there are two issues:
(1) Calculating Eq. (24) involves inverting a CF × CF non-diagonal matrix, which is

computationally intractable;
(2) The channel variability modeled by the Ux term is actually a nuisance that we

wouldn’t like to include in the updated supervector, i.e. we want ˆ ˆ ˆm yM V Dz= + + .
This requires us to explicitly solve for the optimal adapted values of x, y, and z.

 In order to do this, we can write the MAP auxiliary function in terms of x, y, z and x’, y’,
z’:

1

1

'(, , , ', ', ') constant (' ' ')
1 (' ' ') (' ' ')
2
1 1 1' ' ' ' ' '
2 2 2

T

T

T T T

Q x y z x y z M Ux Vy Dz F

M Ux Vy Dz N M Ux Vy Dz

x x y y z z

−

−

= + + + + Σ

− + + + Σ + + +

− − −

 (29)

In a more general version of the EM algorithm, we don’t need to maximize the auxiliary
function in the M-step; we only need to increase it. Therefore we take a two-step approach
following the code in [15]: in the first step we find x’ and y’ to maximize Q’ assuming z’ = 0,

1 The terminology is not unified. In some literature, the columns of U and V are called channel factors and speaker factors,
while the elements of x and y are called factor loadings.

Approved for Public Release; Distribution Unlimited.

16

and in the second step we find z’ to maximize Q’ assuming the values x’ and y’ found in the

last step. Because [][;]Ux Vy U V x y+ = (where the semicolon stands for vertical

concatenation), the method for solving for x’ and y’ jointly is identical to that for solving y’
alone assuming x’ = 0. We absorb everything in Eq. (29) that doesn’t depend on y’ into the
constant:

 1 11'(, ') constant ' () ' () '
2

T T T TQ y y y V F NM y I V NV y− −= + Σ − − + Σ (30)

Setting 1 1
' '(, ') () () ' 0T T

y Q y y V F NM I V NV y− −∇ = Σ − − + Σ = , we obtain the optimal new

speaker factors:

 1 1 1() (ˆ)T TI V NV Vy F NM− − −= + Σ Σ − (31)

If we solved for x and y jointly, then the optimal new factors would be:

 1 1 1[] ([] []) []ˆ ˆ; ()T TI U V N Ux y V U V F NM− − −= + Σ Σ − (32)

The matrix inversion here is no challenge because the order of the matrix is only several
hundred.

 By letting ˆ ˆ, '' xx y y= = and setting the gradient of Eq. (29) w.r.t. z’ to 0, we can obtain

the optimal z’:

 2 1 1 1 ˆ(ˆˆ [()])I D N Dz x VF N U yM− − − + += + Σ Σ − (33)

The matrix inversion here is also easy because the matrix to invert is diagonal.
 As said in the previous subsection, in MAP adaptation we only do one EM iteration,
initializing the supervector to that of the UBM. Therefore the Baum-Welch statistics N and F
in Eqs. (32) and (33) are calculated against the UBM. Since we do not want to include the
channel variability in the adapted GMM, the adapted supervector will be

 ˆ ˆ ˆm M Vy Dz= + + (34)

3.3.1.4 Training the matrices U, V, D

 The procedure described in the last subsection happens in the “speaker enrollment” step,
where the matrices U, V, D are known, and the training data X are the feature vectors
extracted from the utterance(s) of each speaker. However, the matrices U, V, D need to be
trained before enrolling the speakers, and this problem is dealt with in this subsection.
 We train these matrices one by one in the order of V, U, D, following the code in [15].
When training one matrix, we assume that the matrices not yet trained are equal to zero. We
don’t train the matrices jointly because it would be mathematically much more difficult, and
also because it is pointed out in [16] that when they’re trained jointly, D often gets
undertrained – most of the speaker variability is accounted for by Vy, and Dz has little effect.
This is probably because V has many more degrees of freedom than D.
 Before describing the training algorithm, which is explained in detail in [17], we shall

Approved for Public Release; Distribution Unlimited.

17

point out an implicit approximation made by that paper on the data likelihood (|)P X m .

From Eq. (18), we know that

 log (| ,) ())(P X m L Q M mm ≥= (35)

where M is the UBM supervector, and that the difference between ()L m and (,)Q M m is the

Kullback-Leibler divergence between the “alignment” of the data against the UBM and the
GMM with supervector m. We assume the divergence is small enough to neglect, thereby
approximating the data likelihood by

 log (|) (,)P X m Q M m≈ (36)

Then, from Eq. (20), we have

 1 11log (|) constant
2

T TP X m m F m Nm− −+ Σ − Σ≈ (37)

where the Baum-Welch statistics N and F are calculated against the UBM. Applying this
approximation has the advantage that the Baum-Welch statistics can be pre-calculated against
the UBM and stored, and needn’t be re-calculated the in the iterative procedure of training U,
V, D.

(1) Training the V matrix
 Training the V matrix requires utterances from multiple speakers, and ideally multiple

utterances from each speaker to average out the channel variability. Denote by ()X s the

feature vectors of the speaker s. The training objective of the V matrix is to maximize the total
data likelihood:
 () log (() |)

s
L V P X s V=∑ (38)

The conditioned probability may look weird, but we can plug in the hidden variable ()y s , just

like tZ in Eq. (17):

()

() log (()) (() | (),) d ()
s y s

L V P y s P X s y s V y s= ⋅∑ ∫ (39)

Again, we’re having an integral nested within a log, which we tackle with the EM algorithm.
The auxiliary function is:

 ()

()

(, ') constant (() | (),) log ((), () | ') d ()

constant (() | (),) log (() | (), ') d ()

s y s

s y s

Q V V P y s X s V P X s y s V y s

P y s X s V P X s y s V y s

= +

= +

∑ ∫

∑ ∫
 (40)

For clarity, we will drop the argument ()s hereafter. The (| ,)[] d
y

P y X V y⋅∫ part is actually

an expectation operator over the posterior distribution of y given the data X, which we will
denote as E for short. With the approximation of Eq. (36), this posterior distribution is given

Approved for Public Release; Distribution Unlimited.

18

by Eq. (30), i.e.

 1 1 1 1 1~ () ())(, ()T T Ty I V NV V F NM I V NV− − − − −+ Σ Σ − + ΣN (41)

where the Baum-Welch statistics are calculated against the UBM. From this we can calculate
some statistics about y:

 1 1 1() ()T TEy I V NV V F NM− − −= + Σ Σ − (42)

 1 1() ()() ()T T TE yy Ey Ey I V NV− −= + + Σ (43)

which will be useful in simplifying (, ')Q V V .

 Now let’s go on simplifying Eq. (40). The part log (| , ')P X y V is approximated by Eq.

(37):

1 1

1 1

1 1

1(, ') constant ((')) ((') ('))
2

1constant [' ()] (' ')
2

1constant tr[' ()()] tr[' ' ()]
2

T T

s

T T T T

s

T T T T

s

Q V V E M V y F E M V y N M V y

E y V F NM E y V NV y

V F NM Ey V NV E yy

− −

− −

− −

 = + + Σ − + Σ + 
 
 = + Σ − − Σ 
 
 = + Σ − − Σ 
 

∑

∑

∑
 (44)
Set the gradient w.r.t. V’ to zero:
 1 1(, ') ()() ' () 0V

T T

s
Q V V F NM Ey NV E yy′

− − = Σ − −Σ =∇ ∑ (45)

we can find the optimal eigenvoice matrix to be the solution of the following equation system:
 ˆ () ()()T T

s s
NVE yy F NM Ey= −∑ ∑ (46)

This equation system can be solved row by row.
 The entire EM algorithm for training V starts by initializing V randomly, and going
through the above iteration for a number of times. The procedure is summarized below,
introducing some new symbols for conciseness:

• For each speaker s:
 Calculate the Baum-Welch statistics ()N s and ()F s against the UBM;
 Calculate the “centered” first-order Baum-Welch statistics () () ()F s F s N s M= − ;

• Initialize V randomly.
• Repeat for a fixed number of times or until convergence:
 For each speaker s:

♦ Calculate the matrix 1 1() (())TG s I V N s V− −= + Σ ;
♦ Calculate the statistics about the posterior distribution of y:
 1

1 ()() () TE s Ey G s F sV −= = Σ  ; (Eq. (42))
 2 1 1() () () () ()T TE s E yy E s E s G s= = + ; (Eq. (43))

Approved for Public Release; Distribution Unlimited.

19

 Solve the equation system 2 1
ˆ() () () ()T

s s
N s VE s F s E s=∑ ∑  ; (Eq. (46))

 Replace V with V̂ .
(2) Training the U matrix

 The procedure for training V is similar to that of training U. The differences include:
• In the main loop, things are calculated for each utterance instead of for each speaker;
• The speaker factors ()y s is estimated for each speaker before the main loop, and

subtracted from the centered first-order Baum-Welch statistics of each utterance.
 The entire procedure is as below.

• For each speaker s:
 Calculate the Baum-Welch statistics ()N s and ()F s against the UBM;
 Estimate the speaker factors 1 1 1(()) (() ()))(T TI V N s V V F s Ns s My − − −= + Σ Σ − ; (Eq.

(31))
• For each utterance u (suppose it’s spoken by s):
 Calculate the Baum-Welch statistics ()N u and ()F u against the UBM;
 Calculate the “centered” first-order Baum-Welch statistics

() () ()[()]F u F u N u M Vy s= − + ;
• Initialize U randomly.
• Repeat for a fixed number of times or until convergence:
 For each speaker u:

♦ Calculate the matrix 1 1() (())TG u I U N u U− −= + Σ ;
♦ Calculate the statistics about the posterior distribution of x:
 1

1 ()() () TE u Ex G u F uU −= = Σ  ;
 2 1 1() () () () ()T TE u E xx E u E u G u= = + ;

 Solve the equation system 2 1
ˆ() () () ()T

u u
N u UE u F u E u=∑ ∑  ;

 Replace U with Û .
(3) Training the D matrix
• For each speaker s:
 Calculate the Baum-Welch statistics ()N s and ()F s against the UBM;
 Estimate the speaker factors 1 1 1(()) (() ()))(T TI V N s V V F s Ns s My − − −= + Σ Σ − ;

• For each utterance u (suppose it’s spoken by s):
 Calculate the Baum-Welch statistics ()N u and ()F u against the UBM;
 Estimate the channel factors

1 1 1(()) [() (())(())]T TI U N u U U F u N u Vx M y su − − −= + Σ Σ − + ;
 Calculate the “centered” first-order Baum-Welch statistics

() () ()[() ()]F u F u N u M Vy s Ux u= − + + ;
• For each speaker s:
 Calculate the “centered” first-order Baum-Welch statistics ()F s by summing up

Approved for Public Release; Distribution Unlimited.

20

the ()F u of all utterances u spoken by s.
• Initialize D to a random diagonal matrix.
• Repeat for a fixed number of times or until convergence:
 For each speaker s:

♦ Calculate the matrix 2 1 1() (())G s I D N s− −= + Σ ;
♦ Calculate the statistics about the posterior distribution of z:
 1

1 ()() ()E s Ez G s F sD −= = Σ  ;
 2 1 1() () () () ()T TE s E zz E s E s G s= = + ; *

 Solve the equation system 2 1
ˆ() () () ()T

s s
N s DE s F s E s=∑ ∑  ; *

 Replace D with D̂ .
 Note that, because D is a diagonal matrix, for the equations marked with an asterisk, we
only need to care about the diagonal elements.

3.3.2 Variants of JFA and Our Choices

 (1) Order of training the V, U, D matrices. [14] doesn’t state it very clearly but seems
to imply that they trained the matrices in the order of V-D-U. However, in most code we have
found (including the Matlab demo [15] and Alize), the matrices were trained in the order of
V-U-D. Our tutorial above was also written in the order of VU-D. The Janus code we had (see
Section 4.3.1) seemed to support both orders.
 The two different training orders affect the data for training D. In the V-D-U order, D is
trained before the eigenchannels, therefore there must be multiple utterances for the same
speaker to average out the channel effect. On the other hand, in the V-U-D order, the channel
effect in the utterances for training D can be removed since U has been trained already,
therefore it is possible to use only one utterance for each speaker. However, theoretically the
V-D-U order makes more sense, since it first trains everything related to speaker variability,
and then trains the rest related to channel variability.
 We adopted the V-D-U order in our latest experiments.
 (2) Initialization of the V, U, D matrices. This is not carefully stated in most literature;
usually they just say “random initialization” (e.g. [14]). However, we find that the order of
magnitude of the initial value is important. We find that after the first iteration, the directions
of the columns would have almost converged, and in the subsequent iterations it is mostly the
magnitude that gets adjusted. When the initial values are two small, it would take more
iterations for the magnitude to converge; when the initial values are too large, the magnitude
would decrease at a very slow speed and wouldn’t converge even in hundreds of iterations.
We came up with the following empirical scheme for initializing these matrices:

 Let L CF= be the length of the supervector, 1−Σ be the mean of the inverse of the

elements in Σ (the block diagonal matrix of the component covariance matrices), and N be

the average zeroth-order Baum-Welch statistics (number of points) per component and per
speaker. Then, initialize the elements of V and U to obey the normal distribution

Approved for Public Release; Distribution Unlimited.

21

1(0, 1/)L N−ΣN , and the diagonal elements of D to be the absolute value of random

variables that obey the normal distribution 1(0, 1/)N−ΣN .

 This initialization scheme has been found to work better than initializing everything to be
uniformly distributed within the interval [0,1] (as implemented in Janus and Alize).
 (3) Methods and number of iterations in training the V, U, D matrices. The training
procedure of the matrices is an iterative procedure, where in each iteration an objective
function is increased. For example, in the training of the V matrix, the objective function is as
follows:

()

() log (() |)

log (()) (() | (),) d ()
s

s y s

L V P X s V

P y s P X s y s V y s

=

= ⋅

∑

∑ ∫
 (47)

Regarding y(s) as a latent variable, we built an auxiliary function

()

(, ') constant (() | (),) log ((), () | ') d ()
s y s

Q V V P y s X s V P X s y s V y s= +∑ ∫ (48)

which is maximized in each iteration with a series of updating equations. This procedure is
called “maximum likelihood (ML) estimation”, because it increases the likelihood function
L(V).
 Beside the most common ML estimation, in [14], another updating procedure called
“minimum divergence (MD) estimation” is used. Despite the name, this procedure also
increases the likelihood function L(V) in each iteration. It is also an EM algorithm but chooses
a different latent variable than y(s), and its name comes from the auxiliary function which has
the form of the KL-divergence between two Gaussian distributions.
 The updating equation of MD estimation is:

 2
1where (), T

s
JJV VJ E s

S
=← ∑ (49)

In the above equation, S is the total number of speakers, and 2 () [() ()]TE s E y s y s= can be

calculated according to Eq. (43). J is a lower-triangle matrix called the “Cholesky
decomposition” of the right hand side. (Some formulas in [14] include another term; it arises
because [14] also trains the M in the JFA model, but we keep M fixed to the UBM mean.) A
complete derivation of this updating equation can be found in B.
 Since MD estimation is only a right-multiplication onto the V matrix, it does not change
the subspace spanned by the columns of V (i.e. the channel space), but only performs a linear
combination upon the eigenvoice vectors. [14] describes the advantage of MD estimation as
“getting good estimates of the eigenvalues corresponding to the eigenvoices”.
 Most of the code we have seen uses only several ML iterations, but [14] uses 7 ML
iterations plus 1 MD iteration. In our correspondence with P. Kenny (first author of [14]),
Kenny claims it is necessary to do the MD iteration in order for the magnitudes of the matrix
elements to be interpretable. In reality, we found that the MD iteration alters the magnitudes
of the eigenvoices / eigenchannels significantly. After the ML iterations, the lengths of the

Approved for Public Release; Distribution Unlimited.

22

eigenvoices / eigenchannels are almost equal; but after the MD iteration, these lengths form
the shape an exponential function. However, MD iterations did not contribute significantly to
the objective function nor to the final performance; also, we found that some rows of V and U
tend to diverge in MD iterations.
 In our latest experiments we used only 3 ML iterations. We didn’t use MD iterations so
that we could compare our own implementation with Janus and Alize; we did only 3 iterations
because we had a better initialization.
 (4) Estimating x, y, z in speaker enrollment. In Section 3.3.1.3, we showed how to
estimate these vectors in two steps (Eqs. (32) and (33)). In fact, it is also possible to estimate
them jointly. The solution, which involves more complicated math, is given in C. The
two-step estimation is an approximation of the exact joint estimation, but the deviation is
small enough.
 The references [16] and [18] introduce a “Gauss-Seidel-like iterative algorithm”, which
also yields an approximate solution. It has the advantage of being easy to implement.
However, since we have already implemented joint estimation, we stuck to it in our
experiments.

3.3.3 Scoring Methods Special to JFA

 In [13], a series of scoring methods special to JFA are compared. With the exception of
full frame-by-frame scoring, all scoring methods are approximate and are based on the
Baum-Welch statistics. The score of a trial utterance against a target speaker is expressed as a
function of the Baum-Welch statistics N, F of the trial utterance (calculated against the UBM),
the supervector m of the target speaker model, and the concatenated covariance matrix Σ .
Usually this score is adjusted by subtracting the score of the utterance against the UBM. The
adjusted score is called likelihood ratio (LLR), and will also contain the UBM supervector M.
 (1) “nox” – no consideration of channel factors
 A preliminary approximation is to replace the exact frame-average log-likelihood in Eq.
(7) with the EM auxiliary function, which simplifies to:

 1
nox

1 1score (,) [constant ()]
2

TX m m F Nm
n

−= + Σ − (50)

where X stands for the trial utterance, and n is the length (number of feature vectors) of X. The
“constant” term does not depend on m. The LLR will be

 1 1
nox

1 1 1LLR (,) [() ()]
2 2

T TX m m F Nm M F NM
n

− −= Σ − − Σ − (51)

 (2) “intx” – integrating out the channel factors
 Recall that when training the speaker models, the channel factors x are discarded. This
means the target speaker supervectors m (as well as the UBM supervector M) doesn’t contain
any channel factors. Scoring a trial utterance against m effectively ignores the channel factors
x that were at work in producing X, giving rise to mismatch.
 Because nothing is known about the channel factors x of X, a wise way to deal with them
is to integrate x out, using its standard normal prior distribution:

 1
intx

1 1score (,) [constant () (())] (;0,1) d
2

T

x
X m m Ux F N m Ux p x x

n
−= + + Σ − +∫ (52)

Approved for Public Release; Distribution Unlimited.

23

This works out to

 1 1 1
intx

1 1score (,) [constant () () ()]
2

T T TX m F Nm UGU F Nm m F Nm
n

− − −= + − Σ Σ − + Σ −

 (53)

where 1 1()TG I U NU− −= + Σ . The LLR is just

 intx intx intxLLR (,) score (,) score (,)X m X m X M= − (54)

 (3) “pointx” – point estimate the channel factors
 Instead of integrating out the channel factors x, we can also find a point estimate of x that
maximizes the posterior probability of X, i.e. maximizes the integrand of Eq. (52). The
solution is given by

 1ˆ ()T
mx GU F Nm−= Σ − (55)

Therefore the score function is

 1
pointx

1 1score (,) [consta ˆ ˆ)nt ((()]
2

T
m mX m m U F x

n
x N m U−= + + Σ − + (56)

To calculate pointxscore (,)X M , another point estimate of x is needed:

 1ˆ ()T
Mx GU F NM−= Σ − (57)

 1
pointx

1 1score (,) [consta ˆ ˆ)nt ((()]
2

T
M MX M M U F x

n
x N M U−= + + Σ − + (58)

The LLR is just

 pointx pointx pointxLLR (,) score (,) score (,)X m X m X M= − (59)

 (4) “ubmx” – UBM point estimate the channel factors

 An approximation is made by replacing ˆmx with ˆMx .

 1
ubmx

1 1score (,) [constant (() ()]
2

ˆ ˆT
M MX m m U F N m Ux

n
x−= + + Σ − + (60)

 1
ubmx

1 1score (,) [constant (() ()]
2

ˆ ˆT
M MX M M U F N M Ux

n
x−= + + Σ − + (61)

 1
point

1
x

1ˆ) () (1LLR (,) [() ()]
2M

T TX m m M F NM N x m M
n

m MU N−−= − Σ − − − Σ −− (62)

 (5) “linear” – linear approximation of (4)
 By assuming that m M− is small, the quadratic term in (62) is dropped, resulting in the
following linear LLR function:

 1
linear

1LLR (,) (ˆ)) (T
MX m m M F NM NU

n
x−= − Σ − − (63)

 The paper [13] compares full frame-by-frame scoring and the scoring methods (2~5)
here as follows:
 In terms of accuracy:
 Without score normalization, full frame-by-frame is best; intx, pointx and linear

Approved for Public Release; Distribution Unlimited.

24

come close; ubmx is by far the worst.
 With ZT-norm, full frame-by-frame, intx, pointx and linear are all similar, with

pointx and linear reaching the best under some conditions; ubmx is somewhat
worse.

 In terms of efficiency: full frame-by-frame is very slow; pointx is a bit slow; the
other three are fast.

 Considering both aspects, linear scoring seems to be a best choice.
 The “nox” scoring method is applicable to GMM modeling without JFA. The linear
scoring is also applicable, if 0U = is substituted into Eq. (63). The other three scoring
methods are not applicable to GMM modeling without JFA.

3.4 Score Normalization

 The score of an utterance against a speaker model measures their similarity. However, a
larger score doesn’t always mean they’re more similar. For example, a speaker model may
tend to yield higher scores than other models for imposter utterances. In this case, even if an
utterance scores high against this model, it doesn’t necessarily mean that this is the most
likely model. Also, an utterance may tend to score higher than other utterances against
models that do not represent the speaker of this utterance. In this case, the utterance has to
score even higher against a speaker model to be considered a match. In a word, what matters
is not the score itself, but rather how much it stands out from the scores of imposter trials.
Unfortunately the distribution of scores of imposter trials may be different for each model and
each utterance. This is problematic especially for open-set SID, because we need to set a
global threshold θ for all trials. Score normalization is the technique that normalizes the
distribution of scores of imposter trials, so that a fairer comparison of models could be made
in closed-set SID, and a global threshold could be set in open-set SID.
 Two common normalization techniques are zero normalization (Z-norm) and test
normalization (T-norm). Z-norm normalizes the scores by model:

 Znorm
score(,)score (,) m

m

X mX m µ
σ

−
= (64)

where mµ and mσ are the mean and variance of the distribution of scores of imposter trials

against the model m. The imposter utterances are taken from the development data, and the

parameters mµ and mσ can be pre-computed in the training stage. On the other hand, T-norm

normalizes the scores by utterance:

 Tnorm
score(,)score (,) X

X

X mX m µ
σ

−
= (65)

where Xµ and Xσ are the mean and variance of the distribution of scores of X against a set of

cohort models. The cohort models are trained from another set of utterances taken from the

development data. Since the parameters Xµ and Xσ rely on the test utterance, they must be

Approved for Public Release; Distribution Unlimited.

25

estimated in the testing stage.
 The two normalization techniques can be applied one after the other, and the compound
normalization techniques are called ZT-norm and TZ-norm. In ZT-norm, we first normalize
the scores (of both target models and cohort models) with Z-norm, and then normalize the
resulting scores with T-norm. In TZ-norm, we first normalize the scores (of both the trial
utterances and the development imposter utterances) with T-norm, and then normalize the
resulting scores with Z-norm. In order to ensure that the scores used as references are indeed
from imposter trials, the cohort set and the development imposter set must not overlap.
 We studied the effect of score normalization with open-set SID experiments on the
ROSSI database. The numbers are given in Section 4.2. We found that T-norm improved the
open-set performance (while not affecting closed-set performance), while the other
normalizations decreased the performance most of the time.

4. RESULTS AND DISCUSSION

4.1 Closed-Set SID Experiments

 We compare the performance of the most of the acoustic features and
pre-/post-processing techniques by the closed-set accuracy on the ROSSI database. The
numbers are shown in Table 2.
 The naming convention is as follows: The core part of the feature name is the feature type
and its dimensionality, for example, “MFCC21” means 21-dimensional MFCC feature. If the
dimensionality is doubled (e.g. MFCC42), then it means delta features are appended.
Pre-/post-processing techniques are attached to the feature name as prefixes or suffixes.
“PRE” stands for pre-emphasis, “LP” stands for linear prediction, “CMN” stands for cepstral
mean normalization, and “GAUSS” stands for short-time Gaussianization.
 From the table we can see that the features and pre-/post-processing techniques that
improve the closed-set accuracy include:
 Multitaper MFCC (especially using 8 multipeak tapers);
 DSCC;
 Pre-emphasis and delta features;
 Short-time Gaussianization.

Table 2. Performance of Various Acoustic Features and Pre-/Post-Processing
Techniques, Compared by Closed-Set Accuracy on the ROSSI Database

Feature
Set ID

1 2 3 4 5 6 7 8 Average
MFCC21_CMN (Baseline) 89 72 63 43 41 40 65 61 59.250

MFCC42_CMN 86 75 66 43 44 48 65 62 61.125
PRE_MFCC21_CMN 91 75 62 46 41 38 67 60 60.000
PRE_MFCC42_CMN 92 77 65 48 48 46 70 61 63.375

Approved for Public Release; Distribution Unlimited.

26

WMVDR21_CMN 88 74 64 43 40 40 65 62 59.500
SCF20 63 58 44 17 17 15 44 43 37.625

SCF20_PCA 65 64 50 20 21 15 47 46 41.000
MFCC21_CMN + SCF20 75 68 56 30 24 26 57 50 48.250

MFCC21_CMN + SCF20_PCA 83 68 60 33 26 23 59 54 50.750
MFCC21_CMN +

DSCC20_GAUSS100_CMN
(Compared with MFCC42_CMN)

82 78 69 48 46 47 66 64 62.500

Multitaper
MFCC

Baseline (1 Hamming)
– our implementation 89 72 63 43 41 40 65 61 59.250

Baseline (1 Hamming)
– Kinnunen’s

implementation
88 71 64 50 40 40 63 61 59.625

4 Thompson 86 70 66 49 44 38 67 63 60.375
8 Multipeak 90 75 68 50 48 39 64 62 62.000

8 SWCE 91 75 65 46 48 34 67 62 61.000

LP_MFCC21_CMN
(Param = LP order)

1 86 72 63 43 40 38 65 61 58.500
2 86 76 64 47 41 39 65 59 59.625
5 85 75 65 41 31 35 59 62 56.625
10 83 73 68 37 33 30 59 57 55.000
15 81 72 65 37 34 31 60 58 54.750
20 81 71 64 38 33 30 59 57 54.125

MFCC21_GAUSS
(Param = window length in frames)

100 86 74 64 51 42 42 61 64 60.500
200 88 76 65 55 43 43 62 65 62.125
300 85 76 66 51 45 43 64 64 61.750
400 86 75 66 52 44 46 66 62 62.125
500 85 76 67 54 45 44 68 64 62.875

PRE_MFCC42_GAUSS
(Param = window length in frames)

(Compared with PRE_MFCC21_CMN
+ DELTA)

100 89 75 72 54 43 49 66 64 64.000
200 93 75 72 55 45 50 66 67 65.375
300 91 76 70 58 45 48 67 65 65.000
400 93 78 68 56 46 50 68 65 65.500
500 92 76 68 58 45 47 66 64 64.500

 For the prosodic features HSCC and FFV, and their fusion with the baseline MFCC, we
evaluated their performance on the four scenarios on the MIXER5 database, also using the
closed-set accuracy as the criterion. The numbers are shown in Table 3, and the change of the
performance with the fusion weights is visualized in Figure 6. The improvement of the fusion
over baseline MFCC is minor, and the fusion weights are hard to explain: in three of the four
scenarios, FFV, which performs worst alone, has (one of) the highest weights.

Approved for Public Release; Distribution Unlimited.

27

Table 3. Performance of HSCC, FFV, and Their Fusion with MFCC, Compared by
Closed-Set Accuracy on the MIXER5 Database

 VB-YB VL-YL VB-YL VL-YB
MFCC21 70.43 74.71 59.29 55.43
HSCC20 38.43 44.14 23.00 23.00

FFV7 32.29 36.57 10.29 13.71
Best fusion 74.71 79.86 61.71 56.86
Best fusion

weights
0.39 + 0.03 +

0.58
0.35 + 0.05 +

0.60
0.47 + 0.06 +

0.47
0.87 + 0.04 +

0.09

0
0.5

1

0

0.5

1
0

50

100

weight(MFCC)

VB-YB

weight(HSCC)

A
cc

ur
ac

y
/ %

0
0.5

1

0

0.5

1
0

50

100

weight(MFCC)

VL-YL

weight(HSCC)

A
cc

ur
ac

y
/ %

0
0.5

1

0

0.5

1
0

50

100

weight(MFCC)

VB-YL

weight(HSCC)

A
cc

ur
ac

y
/ %

0
0.5

1

0

0.5

1
0

50

100

weight(MFCC)

VL-YB

weight(HSCC)

A
cc

ur
ac

y
/ %

Figure 6. Fusion of MFCC, HSCC and FFV: How the Closed-Set Accuracy Changes
with the Fusion Weights

4.2 Open-Set SID Experiments

 We conducted extensive open-set SID experiments on the ROSSI database. The variables
we considered include:
 Acoustic features: six types of features that investigate the effect of pre-emphasis,

delta feature, short-time Gaussianization, and multitapers. For short-time
Gaussianization, we chose a window length of 400 frames which has been shown to

Approved for Public Release; Distribution Unlimited.

28

perform best for closed-set SID. For multitapers, we used 8 Multipeak tapers.
 Speaker modeling method and kernel function: we compared GMM speaker

modeling and SVM speaker modeling; for the latter, we considered all the six kernel
functions.

 Score normalization: No normalization, Z-norm, T-norm, ZT-norm and TZ-norm.
 For each combination of variables, we measured the 4 criteria for each of the 8 sets of the
ROSSI database. This yielded a total of 6 7 5 8 4 6720× × × × = numbers, which were too
many to analyze. Therefore we aggregated the numbers in the following ways:
 The numbers across the 8 sets are averaged;
 For the six kernel functions, only the best is reported along with the name of that

kernel.
Now there are 6 2 5 4 240× × × = numbers, which is still quite a lot but can be analyzed. These
numbers are listed in Figure 7.
 Figure 7 is made up of five rows and two columns, where each row stands for a type of
score normalization and the two columns stand for the two scoring methods. Each small table
has five rows corresponding to features and four columns corresponding to the evaluation
criteria. In the SVM modeling part, the name of the best kernel is shown alongside the
numbers. The greener the background is, the larger the number. The maximum number in
each column of the small tables is highlighted in red.
 The following conclusions can be obtained concerning the variables we’re interested in:
 Scoring method: SVM speaker modeling is significantly better than GMM

modeling.
 Score normalization: T-norm improves the open-set performance (while not

affecting closed-set performance), while the other normalizations decrease the
performance most of the time.

 Acoustic feature: The best feature for closed-set SID is
PRE_PEAK8_MFCC40_GAUSS400 (with every technique included). The best
feature for open-set SID, if we focus on the T-norm, is PRE_MFCC42_GAUSS400.
Multitapers do not seem to work well for open-set SID. For other score
normalizations the conclusion may be a bit different, but there’s no doubt that the
pre-emphasis and delta features should be included.

 Kernel function: The numbers favor the WBHATT kernel for closed-set SID, and
the BHATT or GUMI kernel for open-set SID. Experiments that compare the
performances of different kernel functions show that the PLAIN and KL kernels also
achieve a similar performance with negligible differences, but the L2 kernel
performs much worse and can be eliminated.

Approved for Public Release; Distribution Unlimited.

29

Figure 7. Open-Set Evaluation Results on the ROSSI Database

4.3 Experiments with JFA

4.3.1 Toolkits Used in Our Experiments of JFA

 We implemented everything except frame-by-frame scoring in Matlab. Because our
results didn’t turn out good for a long time, we also used two toolkits for comparison: Janus
and Alize. We compared the part of the speaker recognition pipeline after calculating the
Baum-Welch statistics, including the initialization and training of the V, U, D matrices,
speaker enrollment, and scoring.
 Janus refers to the JFA functionality built into the “Janus” speech recognition software of
our lab, written in C++. It initializes the JFA matrices at the order of magnitude of 1, but also
supports custom initialization. The training order of the matrices seems to be flexible. The
enrollment and scoring parts are too slow to be used.
 Alize [19] is an open source platform for biometric authentication developed by the
University of Avignon, including the functionality of JFA. It is also written in C++. Like
Janus, Alize initializes JFA matrices at the order of magnitude of 1 by default and supports
custom initialization. It must train the JFA matrices in the order of V-U-D. In speaker
enrollment, Alize first estimates the vectors y and x jointly, then estimates the z vector. The

Approved for Public Release; Distribution Unlimited.

30

scoring methods offered by Alize include frame-by-frame scoring (either full or fast) and
linear scoring.

4.3.2 JFA Experiment Setup and Results

 In our experiments, we used our own initialization of the JFA matrices (which has been
found to be superior to the default initialization of Janus and Alize). We compared the training
of the JFA matrices of our own code and the two toolkits (V-D-U with Matlab and Janus, V-
-U-D with Alize). For speaker enrollment, we used our own code of joint estimation of y, x
and z. The two-step estimation of Alize doesn’t exhibit much difference from joint estimation.
For scoring, we used Alize’s fast frame-by-frame scoring (choosing 5 top components) and
our implementation of the five scoring methods in Section 3.3.3. It has been verified that
Alize’s implementation of linear scoring produces exactly the same results as our
implementation. We also implemented SVM modeling and scoring.
 Because we didn’t get good results, and because the results seem to be sensitive to many
variables, we used only the PLAIN kernel for SVM modeling and scoring, and didn’t apply
any score normalization.
 Below are our latest results (EER) obtained on the sixth subset (telephone train,
telephone test) of the male trials of the NIST 2008 evaluation. The acoustic feature used is
RM40.

Table 4. Comparison of EER of various training methods of JFA matrices and scoring
methods

on the sixth subset of NIST 2008 male trials

 Relevance
MAP

JFA with
Matlab

JFA with
Janus

JFA with
Alize

Fast frame-by-frame 14.76 15.66 14.32 15.90
nox 14.12 15.38 15.10 15.21
intx

N/A
15.34 11.85 15.15

pointx 15.34 11.86 15.16
ubmx 15.33 16.70 15.22
linear 12.93 16.65 12.47 16.70

SVM (PLAIN
kernel)

9.77 11.78 11.78 11.72

 It appears that among the three implementations of JFA, only Janus shows an
improvement over the relevance MAP baseline (except the case with SVM). Also, the trend
of the performance of the intx, pointx, ubmx and linear scoring methods agrees with those in
[13]. However, when we investigated what was the difference of the Janus implementation
from the others, we found that the U matrix wasn’t correctly trained by Janus: 98 out of the
100 columns were almost identical. We tried running the enrollment and scoring with only
some of the matrices V, U, D, and found that it was exactly the “wrong” U matrix that
produced the low error rates. We tried training the U (or D) matrix directly after training the V

Approved for Public Release; Distribution Unlimited.

31

matrix with the three implementations, and found that Janus produced different results from
the other two. The D matrix trained by Janus even contained negative values despite the
all-positive initialization. This seems to be evidence that the Janus implementation is
probably wrong, and the good numbers we obtained couldn’t be explained. Also, when SVM
modeling and scoring are used, we never found a configuration that beat the relevance MAP
baseline. We suspect that the following two factors might relate to the no success of JFA:
 1. The database used, and the division of the data. The NIST database is huge, and its
organization is complicated. It might take pages to exactly specify what data one used for
what part of the experiments, and sometimes one may even have to provide the file lists. As a
result, we haven’t been able to replicate the data division of any literature, and it is possible
that we have run all our experiments on a not so reasonable division of the data.
 2. Lack of a working configuration of JFA. Although we had access to the source code of
two toolkits, the source code only contained functions that perform the individual units of
functionality in JFA, and we had to configure the pipeline (e.g. order of training the matrices)
on ourselves. In doing so we naturally tended to imitate our own configuration, and if our own
configuration had been wrong, the toolkits wouldn’t have helped us discover our mistake.
Even though the toolkits can be useful for debugging the implementation, we might still have
missed the “correct” configuration.

5. CONCLUSION
 During the performance period of this project, we have worked on all the modules of
speaker recognition systems. At the front end, we have studied a variety of acoustic features
and pre-/post-processing techniques, and have come up with a PPMD feature that combines
the benefits of multitaper MFCC, DSCC, pre-emphasis, and short-time feature
Gaussianization. At the speaker modeling and scoring stages, we have also investigated SVM
and JFA. We have demonstrated that compared to GMM modeling, SVM modeling and
scoring are not only better and also faster. We have also shown that T-norm of the scores
improves open-set speaker identification performance on the ROSSI database.

6. REFERENCES
[1] H. Hermansky and N. Morgan, “Rasta processing of speech,” IEEE Transactions on

Speech and Audio Processing, vol.2, no. 4, pp. 578-589, Oct 1994.
[2] S. O. Sadjadi and J. H. L. Hansen, “Assessment of single-channel speech enhancement

techniques for speaker identification under mismatched conditions,” ISCA Interspeech,
pp. 2138-2141, 2010.

[3] Q. Jin, R. Li, Q. Yang, K. Laskowski, and T. Schultz, “Speaker identification with
distant microphone speech,” IEEE ICASSP, pp. 4518-4521, 2010.

[4] T. Kinnunen, et al., “What else is new than the Hamming window? Robust MFCCs for
speaker recognition via multitapering,” InterSpeech 2010.

[5] J. M. K. Kua, et al., “Investigation of spectral centroid magnitude and frequency for
speaker recognition,” Odyssey, pp. 34-39, 2010.

[6] K. Laskowski and Q. Jin, “Modeling prosody for speaker recognition: Why estimating

Approved for Public Release; Distribution Unlimited.

32

pitch may be a red herring,” Odyssey, 2010.
[7] K. Laskowski, J. Edlund, and M. Heldner, “Learning prosodic sequences using the

fundamental frequency variation spectrum,” Proc. SPEECH PROSODY, 2008.
[8] K. Kumar, “A spectro-temporal framework for compensation of reverberation for

speech recognition,” PhD thesis, Jan 2011, Chapter 8.
[9] A. Kawamura, K. Fujii, Y. Itoh, and Y. Fukui, “A noise reduction method based on

linear prediction analysis,” Electronics and Communications in Japan, Part 3, vol. 86,
no. 3, 2003.

[10] B. Xiang, et al., “Short-time Gaussianization for robust speaker verification,” ICASSP,
pp. 681-684, May 2002.

[11] D. Reynolds, T. Quatieri and R. Dunn, “Speaker verification using adapted Gaussian
mixture models,” Digital Signal Processing, vol. 10, pp. 19-41, 2000.

[12] P. Kenny, “Joint factor analysis of speaker and session variability: Theory and
algorithms,” Technical report CRIM-06/08-13 Montreal, CRIM, 2005. [Online]
http://www.crim.ca/perso/patrick.kenny/.

[13] O. Glembek, L. Burget, N. Dehak, N. Brümmer, and P. Kenny, “Comparison of scoring
methods used in speaker recognition with joint factor analysis,” Proc ICASSP 2009,
Taipei, Taiwan, April 2009.

[14] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of inter-speaker
variability in speaker verification,” IEEE Trans. on ASLP, July 2008.

[15] O. Glembek, “Joint factor analysis Matlab demo,” [Online]
http://speech.fit.vutbr.cz/software/joint-factor-analysis-matlab-demo.

[16] L. Burget et al., “Investigation into variants of joint factor analysis for speaker
recognition,” Proc InterSpeech 2009, pp. 1263-1266, September 2009.

[17] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with sparse training
data,” IEEE Trans. on Speech and Audio Processing, vol. 13, no. 3, pp. 345-359, May
2005.

[18] R. Vogt and S. Sridharan, “Explicit modeling of session variability for speaker
verification,” Computer Speech and Language, pp. 17-38, vol. 22, no. 1, January 2008.

[19] “ALIZE wiki,”, [Online]
http://mistral.univ-avignon.fr/mediawiki/index.php/Main_Page

[20] R. Auckenthaler, M. Carey and H. Lloyd-Thomas, “Score normalization for
text-independent speaker verification systems,” Digital Signal Processing, vol. 10, pp.
42-54, 2000.

Approved for Public Release; Distribution Unlimited.

33

A. DERIVATION OF GMM KERNELS
 In this appendix we give the derivation of the six GMM kernel functions (PLAIN, GUMI,
KL, L2, BHATT, WBHATT). The motivation of these kernels can be divided into three
categories:
 Defining a “supervector” for each GMM, and using the inner product of the

supervectors as the inner product of the GMMs (PLAIN);
 Defining a “distance” measure between GMMs, and deriving an inner product from

the distance (GUMI, KL);
 Directly defining an “inner product” on the probability density functions of GMMs

(L2, BHATT, WBHATT).
 In the following discussion, we only consider the adaptation of GMM means. The
covariances and component weights of the adapted GMMs are identical to those of the UBM.

We shall denote the UBM by (, ,)i i iM wµ= Σ , and the adapted GMMs by (, ,)a
a i i iM wµ= Σ

and (, ,)b
b i i iM wµ= Σ .

A.1 The PLAIN kernel

 The first way of defining a GMM kernel is to define a supervector for each GMM. The
PLAIN kernel constructs the supervector by concatenating all the component means. The
resulting kernel function is:

 PLAIN (,) () ()a T b
a b i ii

K M M µ µ=∑ (A-1)

This kernel is simple, but one might criticize it for not taking into account the covariance
matrices. For example, it is reasonable to introduce the covariance matrices in a way similar
to the Mahalanobis distance:

 1(,) () ()a T b
a b i i ii

K M M µ µ−= Σ∑ (A-2)

As it turns out, this is the GUMI kernel to be discussed next.

A.2 The GUMI kernel [A-1]

 The second way of defining a GMM kernel is to derive it from a distance measure. The

distance d associated with an inner product ,⋅ ⋅ satisfies 2 (,) ,d a b a b a b= − − . If the

squared distance takes on a form in which the difference of some function of the GMM

models () ()a bf M f M− occurs twice in a multiplicative relationship, then we can define the

replace them with ()af M and ()bf M respectively to define a kernel function. The GUMI

Approved for Public Release; Distribution Unlimited.

34

and KL kernels are two examples.
 The GUMI (GMM-UBM mean interval) kernel is derived from the Bhattacharyya
distance of two probability distributions. The Bhattacharyya distance between two

probability distributions ()ap x and ()bp x is defined as:

 Bhatt (,) ln () ()da b a bD p p p x p x x= − ∫ (A-3)

For two Gaussian distribution (not GMMs) (,)a a
aN µ Σ and (,)b b

bN µ Σ , the Bhattacharyya

distance is:

 1
Bhatt

1(,) () () ()
8 2

a b
a b T a b

a bD N N µ µ µ µ−Σ + Σ
= − − (A-4)

When the two distributions have identical covariance matrices (a bΣ = Σ = Σ), the
Bhattacharyya distance reduces to:

 1
Bhatt

1(,) () ()
8

a b T a b
a bD N N µ µ µ µ−= − Σ − (A-5)

For GMMs, however, it is hard to calculate the Bhattacharyya distance. Nevertheless, the
effect of GMM adaptation manifests itself in a shift of the means of the individual
components, so it still makes sense if we measure the distance between corresponding
components. A GUMI kernel, therefore, is defined for two Gaussian distributions by
modifying Eq. (A-5) and dropping the constant:

 1
GUMI (,) () ()a T b

a bK N N µ µ−= Σ (A-6)

And the GUMI kernel for GMMs is then defined as the sum of Eq. (A-6) over all components:

 1
GUMI (,) () ()a T b

a b i i ii
K M M µ µ−= Σ∑ (A-7)

(In the original literature the GUMI kernel is defined as

 1
GUMI (,) () ()a T b

a b i i i i ii
K M M µ µ µ µ−= − Σ −∑ (A-8)

But since the SVM is shift-invariant, the subtraction of the UBM means can be dropped.)

A.3 The KL kernel [A-1][A-2]

 The KL kernel is based on the KL divergence of two probability distributions. The KL

divergence from a probability distribution ()ap x to another probability distribution ()bp x is

defined as:

 KL
()(||) () log d
()

a
a b a

b

p xD p p p x x
p x

= ∫ (A-9)

Note that this is an asymmetric function. For Gaussian distributions (,)a a
aN µ Σ and

(,)b b
bN µ Σ , the KL divergence is:

Approved for Public Release; Distribution Unlimited.

35

 1
KL

1(||) () () ()
2

a b T b a b
a bD N N µ µ µ µ−= − Σ − (A-10)

Note the asymmetry: the KL divergence depends on the covariance bΣ but not aΣ . However,
when the two distributions have identical covariances, the KL divergence is reduced to:

 1
KL

1(||) () ()
2

a b T a b
a bD N N µ µ µ µ−= − Σ − (A-11)

which is essentially the same as the Bhattacharyya distance (Eq. (A-5)).
 From this point on we may derive the same kernel function as the GUMI kernel. But the
authors of [A-2] didn’t want to jump from the KL divergence of GMMs to the sum of KL
divergences of individual components directly. Instead, they worked out an upper bound of
the KL divergence of GMMs using the log-sum inequality:

 KL

1

(||) (||)

() ()

a b
a b i KL i ii

a b T a b
i i i i i ii

D M M w D M M

w µ µ µ µ−

≤

= − Σ −
∑
∑

 (A-12)

where a
iM and b

iM stand for the i-th component of the two GMMs. And from this they

derived the KL kernel function:

 1
KL (,) () ()a T b

a b i i i ii
K M M w µ µ−= Σ∑ (A-13)

 It turns out that the sole difference between the GUMI and KL kernel is whether the
components are weighted. There is some approximation involved in the derivation of both
kernels, so there is no theoretical justification for either of them. The paper [A-1] says that “in
various signal selection problems, the Bhattacharyya distance has shown to give better results
than the KL divergence,” but we still need to do experiments with our own data to see the
difference in performance.

A.4 The L2 kernel [A-2]

 The third way to define a GMM kernel function is to treat GMMs as continuous
probability density functions, and use a general inner product for continuous functions. The
L2 kernel makes use of the L2 inner product of real continuous functions:

L2

(), () () ()df x g x f x g x x= ∫ (A-14)

For two Gaussian distributions (,)a a
aN µ Σ and (,)b b

bN µ Σ in a D-dimensional space, the

inner product is:

L2

1

1/2/2

, (| 0,)

1 () () ()exp
2(2)

a b a b
a b

a b T a b a b

D a b

N N N µ µ

µ µ µ µ

π

−

= − Σ +Σ

 − Σ +Σ −
= − 

 Σ + Σ

 (A-15)

With identical covariance matrices, the inner product is reduced to:

Approved for Public Release; Distribution Unlimited.

36

L2

1

1/2/2

, (| 0, 2)

1 () ()exp
4(4)

a b
a b

a b T a b

D

N N N µ µ

µ µ µ µ
π

−

= − Σ

 − Σ −
= − 

Σ  

 (A-16)

The inner product of two GMMs is:

L2 L2

, ,a b
a b i j i ii j

M M w w M M=∑ ∑ (A-17)

Under the assumption that non-corresponding components of the two GMMs are situated far
away so that they do not make significant contribution to the inner product, this is

approximated to yield the L2 kernel function (dropping the constant term /2(4)Dπ :

2
L2 L2

2 1

1/2

(,) ,

() ()exp
4

a b
a b i i ii

a b T a b
i i i i i i

i
i

K M M w M M

w µ µ µ µ−

=

 − Σ −
= − 

Σ  

∑

∑
 (A-18)

The L2 kernel is somewhat to the radial basis kernel function, because it puts the quadratic
form in an exponential function.

A.5 The BHATT and WBHATT kernels

 The radial basis kernel function has a nice property: because of the positive semidefinity
of the 1−Σ matrix, the exponential term is bounded in [0,1]. However, in the L2 kernel, the

1/2Σ term breaks this bound. Is it possible to eliminate the latter term? The answer is yes – if

we use the Bhattacharyya inner product instead of the L2 inner product.
 In the definition of the Bhattacharyya distance (Eq. (A-3)), the part inside the logarithm
is also a valid inner product for two continuous functions:

Bhatt

(), () () ()df x g x f x g x x= ∫ (A-19)

Because the geometric mean is smaller than or equal to the arithmetic mean, for two
probability distributions (whose integral is 1), the Bhattacharyya inner product is bounded in

[0,1]. The Bhattacharyya inner product for two Gaussians (,)a
aN µ Σ and (,)b

bN µ Σ with

identical covariance matrices is:

 1
Bhatt

1, exp () ()
8

a b T a b
a bN N µ µ µ µ− = − − Σ −  

 (A-20)

Similar to the derivation of the L2 kernel, we can derive the weighted Bhattacharyya
(WBHATT) kernel for GMMs:

1

WBHATT
() ()(,) exp

8

a b T a b
i i i i i

a b ii
K M M w µ µ µ µ− − Σ −

= − 
 

∑ (A-21)

Just like the GUMI kernel, one could argue that the weighting of components is unnecessary,

Approved for Public Release; Distribution Unlimited.

37

and thus we have the unweighted Bhattacharyya (BHATT) kernel:

1

BHATT
() ()(,) exp

8

a b T a b
i i i i i

a b i
K M M µ µ µ µ− − Σ −

= − 
 

∑ (A-22)

Both the BHATT and WBHATT kernels are bounded, which is a major difference from the
other kernels.

[A-1] C. H. You, K. A. Lee and H. Li, “GMM-SVM kernel with a Bhattacharyya-based

distance for speaker recognition,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 18, no. 6, pp. 1310-1312, Aug 2010.

[A-2] W. Campbell, D. Sturim and D. Reynolds, “Support vector machines using GMM
supervectors for speaker verification,” Signal Processing Letters, 2006.

Approved for Public Release; Distribution Unlimited.

38

B. DERIVATION OF MINIMUM DIVERGENCE ESTIMATION
 First we take a quick look at maximum likelihood estimation. The objective function is
 () log (() |)

s
L V P X s V=∑ (B-1)

By choosing ()y s as the latent variable (which is a natural choice), we construct an auxiliary

function:

 ()

()

(, ') constant (() | (),) log ((), () | ') d ()

constant (() | (),) log (() | (), ') d ()

s y s

s y s

Q V V P y s X s V P X s y s V y s

P y s X s V P X s y s V y s

= +

= +

∑ ∫

∑ ∫
 (B-2)

Note the change in the term within the logarithm. This happened because (dropping the
argument s)

 log (, | ') log (| , ') log (| ')P X y V P X y V P y V= + (B-3)

But the (prior) distribution of y doesn’t depend on V’, so the second term gets absorbed by the
“constant” term (remember that we’re going to maximize Q in terms of V’ only).

 Now we make an “unnatural” choice about the latent variable – we choose the entire Vy ,

and denote it by a. By imitating Eq. (40), we can write out the auxiliary function:
 '(, ') constant (| ,) log (, | ') d

s a

Q V V P a X V P X a V a= +∑∫ (B-4)

The meaning of this formula isn’t obvious at first sight. First, the range of a doesn’t cover the

entire CF-dimensional space, so the probability density function (| ,)P a X V isn’t

well-defined. This doesn’t matter, because we can treat the entire (| ,) ·[] d
a
P a X V a∫ part as

an expectation operator | ,a X VE over the posterior distribution of a:

 | ,'(, ') constant [log (, | ')]a X V
s

Q V V E P X a V= +∑ (B-5)

Next let’s study the term within the logarithm. We can decompose it in a similar way to Eq.
(B-3):

 log (, | ') log (| , ') log (| ')P X a V P X a V P a V= + (B-6)

Now look at the first term: when a is given, the distribution of X is determined, and V’ has no
effect! Therefore this time it is the first term that gets absorbed by the “constant” term. The
auxiliary function becomes
 | ,'(, ') constant [log (| ')]a X V

s
Q V V E P a V= +∑ (B-7)

 If the range of V’ were different from that of V, then log (, | ')P X a V will be zero almost

Approved for Public Release; Distribution Unlimited.

39

everywhere over the posterior distribution of a, which is meaningless. It is required that the
range of V’ be identical to that of V, and this is why minimum divergence doesn’t change the
eigenvoice space.
 Given that the columns of V and V’ span the same subspace, we can let 'V VJ= , where J

is a small invertible matrix. Let’s think about what (| ')P a V means: it means that a variable

y’, whose prior distribution is the standard normal distribution, takes a value such that

' 'V y a Vy= = , which means 'y Jy= . So, if we drop the notation of a and switch to y, the

auxiliary function will become
 | ,'(, ') constant [log (')]y X V

s
Q V V E P y Jy= + =∑ (B-8)

This is a cross-entropy from the posterior distribution of y to the distribution of 'Jy . If we add

the entropy of the posterior distribution of y itself (anyway it doesn’t depend on V’), the
auxiliary function becomes

 | ,
log (')'(, ') constant
log (| ,)y X V

s

P y JyQ V V E
P y X V

=
= +∑ (B-9)

which is then the negative of the KL-divergence between the two aforementioned distribution.
Remember that the prior distribution of y’ is the standard normal distribution. Maximizing the
auxiliary function is equivalent to minimizing (the sum across all speakers of) the

KL-divergence from the posterior distribution of y to the distribution of 'Jy – this is why this

updating procedure is called “minimum divergence estimation”.
 In Section 3.3.1.4 we have derived that the posterior distribution of y is (see Eq. (41)):

 1((), ())E s G sN (B-10)

And given that ~ (0,)y IN , the distribution of 'Jy is

 (0,)TJJN (B-11)

The KL-divergence from a k-dimensional Gaussian distribution 0 0 0(,)µ ΣN to another

Gaussian distribution 1 1 1(,)µ ΣN , according to Wikipedia, is:

 () ()1 1 0
KL 0 1 1 0 1 0 1 1 0

1

det1() tr () log
2 det

TD kµ µ µ µ− −  Σ
= Σ Σ + − Σ − − −   Σ  

‖N N (B-12)

(The sum of) the KL-divergence to be minimized, dropping the terms that don’t depend on V’,
is

 ()1 1
1 1

1 tr[() ()] () () () log det()
2

T T T T
KL

s
D JJ G s E s JJ E s JJ− −Σ = + +∑ (B-13)

Approved for Public Release; Distribution Unlimited.

40

Let 1()TK JJ −= , and we want to find the matrix K that minimizes this sum of KL-divergence.

We will take its derivative to K. Here are some formulas of matrix calculus that come in
handy:

 1tr() () det (adj) det ()T T T T TAB B x Ay xy A A A A
A A A

−∂ ∂ ∂
= = = = ⋅

∂ ∂ ∂
 (B-14)

where adj A is the adjugate of A. Also, since the matrices we’re dealing with are all

symmetric, we don’t need to care about the transposes.

 The derivative of KLDΣ w.r.t K is

()

()

1 1

1

1 1

1
2

1 [()] () () log det
2
1 det() () ()
2 det
1 ()
2

T
KL

s

T

s

s

D tr KG s E s KE s K
K K

K KG s E s E s
K

E s K

−

−

∂ ∂
Σ = + −

∂ ∂

 ⋅
= + − 

 

= −

∑

∑

∑

 (B-15)

Set this derivative to zero, and we’ll have

 1
2

1 ()T

s
K JJ E s

S
− = = ∑ (B-16)

By Cholesky decomposition we can find J, and update V by V VJ← . The update formulas
for D and U are similar.

Approved for Public Release; Distribution Unlimited.

41

C. JFA SPEAKER ENROLMENT: JOINT ESTIMATION OF x, y, z
 Analogous to Eq. (32), joint estimation of y, x, z entails calculating

 1 1 1[] ([] []) []ˆ; ; ()ˆ ˆ T TI U V D N U V D U V Dz Mx y F N− − −= + Σ Σ − (C-1)

The hard part of this is the matrix inversion 1 1([] [])TI U V D N U V D− −+ Σ . To simplify the

notation, let []W U V= and 1S N−= Σ , then the inversion becomes:

1

1([] [])
T T

T I W SW W SD
I W D S W D

DSW I DSD

−

−  +
+ =  + 

 (C-2)

In this formula, W is a tall but think matrix, and D and S are large diagonal matrices. So the
matrix to be inverted has a huge bottom-right corner that is diagonal.
 We’ll invert this matrix by row transformations. In the procedure, we’ll introduce more
letters to simplify the notation. We start with

0

0

T TI W SW W SD I
DSW I DSD I

 +
 + 

 (C-3)

Multiply the second row with 1()I DSD −+ , and subtract from the first row TW SD times the

new second row:

1 1

1 1

() 0 ()
() 0 ()

T T TI W SW W SD I DSD DSW I W SD I DSD
I DSD DSW I I DSD

− −

− −

 + − + − +
 + + 

 (C-4)

Let’s look at the top-left block. Remember that 1()I A −+ can be expanded as
2 3I A A A− + −  , therefore

1

2 2 2

2 2 2 2 2 2 2 2 2 2

2 1

1

()
()

()
()
()

T T

T T

T

T

T

I W SW W SD I DSD DSW
I W SW W SD I DSD DSD SD DSD SD SD DSW
I W S SD S SD SD S SD SD SD S SD SD SD SD S W
I W I SD SW
I W I DSD SW

−

−

−

+ − +

= + − − + −

= + − + − +

= + +

= + +



 (C-5)

Now let 1()P I DSD −= + , then we have

0

0

T TI W PSW I W SDP
PDSW I P

 + −
 
 

 (C-6)

Let TH I W PSW= + , and multiply the first row with 1H − :

Approved for Public Release; Distribution Unlimited.

42

1 10

0

TI H H W SDP
PDSW I P

− − −
 
 

 (C-7)

Subtract from the second row PDSW times the first row:

1 1

1 1

0
0

T

T

I H H W SDP
I PDSWH P PDSWH W SDP

− −

− −

 −
 − + 

 (C-8)

Now the part on the right side of the dotted line is the inverse of we wanted to find. Its
computation involves the inversion of two matrices (I DSD+ and H). The former is a
diagonal matrix, and the second is small; the computation of both is tractable.
 We can go on to calculate the estimates of y, x and z:

1 1

11 1
1

1 1

1
1

1

[] ([] []) []ˆ ˆ ()

()

()
(

;

)

ˆ

()

; T T

T T

T

T

I W D S W D W D F NM

H H W SDP W
F NM

PDSWH P PDSWH W SDP D

H W I SDPD
F NM

PD PDSWH W I SDPD

x y z − −

−− −
−

− −

−
−

−

= + Σ −

   −
= Σ −   − +   
 −

= Σ − − − 

 (C-9)

To break this further down, we have:

 1 1[] (ˆ ˆ;) ()TH W I SDPD F Nx y M− −= − Σ − (C-10)

1

1

() [
[

ˆ ˆˆ ;]
ˆ ˆ{ (;])}

z x y
PD F N M
PD F NM PDSW

W x y

−

−= Σ − +

= Σ − −
 (C-11)

We can see that Eq. (C-11) is exactly the same as Eq. (33). That means in both two-step
estimation and joint estimation, the same formula is used to calculate z when x and y are
known. However, in joint estimation, the matrix D also comes into play in the estimation of x
and y.

Approved for Public Release; Distribution Unlimited.

43

LIST OF SYMBOLS, ABBREVIATIONS AND
ACRONYMS

BHATT Bhattacharyya (a kernel function)
CA correct accept
CDF cumulative density function
CMN cepstral mean normalization
CMS cepstral mean subtraction
CR correct reject
DSCC delta-spectral cepstral coefficients
EER equal error rate
EM expectation-maximization
F0.5 precision biased correct decision rate (an open-set evaluation criterion)
FA false accept / false alarm
FFV fundamental frequency variation
FR false reject
GMM Gaussian mixture model
GUMI GMM-UBM mean interval (a kernel function)
HMM hidden Markov model
HSCC harmonic structure cepstral coefficients
IROSIS integrated robust open-set speaker identification system
JFA joint factor analysis
KL Kullback-Leibler (divergence, also a kernel function)
L2 a kernel function
LLR log-likelihood ratio
LMS least mean squares
LP linear prediction
MAP maximum a posteriori
MD minimum divergence
MFCC Mel-frequency cepstral coefficients
MHEC mean Hilbert envelope coefficients
ML maximum likelihood
NIST National Institute of Standards and Technology

PPMD
PRE_PEAK8_MFCC20_GAUSS300 +
PRE_PEAK8_DSCC20(GAUSS300)_CMN (an acoustic feature)

RASTA relative spectral (filtering)
RM40 an acoustic feature
ROSSI robust open-set speaker identification
SCF spectral centroid frequency

Approved for Public Release; Distribution Unlimited.

44

SCM spectral centroid magnitude
SE speaker error
SID speaker identification
SNR signal-to-noise ratio
SRE speaker recognition evaluation
SVM support vector machine
SWCE sine-weighted cepstrum estimator (a type of multitapers)
UBM universal background model
VAD voice activity detection
WBHATT weighted Bhattacharyya (a kernel function)
WMVDR warped minimum variance distortionless response

	LIST OF FIGURES
	LIST OF TABLES
	1. Summary
	2. Introduction
	2.1 Block Diagram of Speaker Recognition Systems
	2.2 Databases Used in the IROSIS Project
	2.3 Evaluation Criteria

	3. Methods, Assumptions, and Procedures
	3.1 Acoustic Feature Extraction
	3.1.1 Various Acoustic Features
	3.1.2 Pre- and Post-Processing Techniques
	3.1.3 Best Feature Selected

	3.2 Speaker Modeling and Scoring
	3.2.1 Gaussian Mixture Modeling (GMM)
	3.2.1.1 GMM Adaptation Techniques
	3.2.1.2 Scoring Methods with GMM Modeling

	3.2.2 Support Vector Machine (SVM) Modeling

	3.3 Joint Factor Analysis (JFA) Modeling
	3.3.1 A Tutorial of JFA
	3.3.1.1 ML training of GMMs, and Baum-Welch statistics
	3.3.1.2 MAP adaptation of GMMs in general
	3.3.1.3 GMM adaptation using JFA
	3.3.1.4 Training the matrices U, V, D

	3.3.2 Variants of JFA and Our Choices
	3.3.3 Scoring Methods Special to JFA

	3.4 Score Normalization

	4. Results and Discussion
	4.1 Closed-Set SID Experiments
	4.2 Open-Set SID Experiments
	4.3 Experiments with JFA
	4.3.1 Toolkits Used in Our Experiments of JFA
	4.3.2 JFA Experiment Setup and Results

	5. Conclusion
	6. References
	A. Derivation of GMM Kernels
	A.1 The PLAIN kernel
	A.2 The GUMI kernel [A-1]
	A.3 The KL kernel [A-1][A-2]
	A.4 The L2 kernel [A-2]
	A.5 The BHATT and WBHATT kernels

	B. Derivation of Minimum Divergence Estimation
	C. JFA Speaker Enrolment: Joint Estimation of x, y, z
	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

